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1. Introduction

This report describes the Phase I activities conducted for the Army Research Institute
(AR} at Cybernet Systems Corporation during the period of January 24", 2000 to July
24" 2000, under the “Adaptive Instructional System,” contract DASWOI-00-M-4088.
These activities focused on four major areas:

1) Develop a Helicopter Flight Model for the Model-Based Reasoning Diagnostic
Engine (MBRDE),

2) Integrate the Model-Based Reasoning Diagnostic Engine into the OpenSkies
Virtual Environment Training System,

3) Enrhance the OpenSkies Virtual Environment Training System to Focus the
Student’s Effort in Deficient Areas,

4) Demonstrate Adaptive Training by Creating a Scenario for Hovering a Helicopter
in OpenSkies,

This rescorch  demonstrated  that an Army adaptive instructional system c¢an
be effectively developed and implemented.

1.1 Motivation

This Phase I research was important because it facilitated the development of a model-
based adaptive instruction system for teaching helicopter pilots. An adaptive training
system that focuses on the deficiencies of the student can both increase the number of
students meeting the minimum proficiency levels and save training time. Cybernet plans
to continue our development of this adaptive training methodology based on expernt
system and model-based teehniques. This will allow us to determine where a student’s
deficiencies lie and adapt the training facility to focus on those problem arcas, Unlike
other simulators that are currently available, we will be Incorporating each student’s
learning style preference into the simulation instruction. The proposed Phase 11 effort is
focused on continued development and enhancement of this system. Our Phase 1 work
demonstrated the feasibility of accomplishing this through the integration of our Model-
Based Reasoning Diagnostic Engine and our OpenSkies Virtual Eovironment to produce
a complete Adaptive Training System.

1.2 Project Goals

The intent of this effort was to develop a technology demonstration for an adaptive
training system, focused on diagnosis of student behavior. In the Phase I effort Cybernet
proposed building a diagnostic engine for student fault detection and remediation. In this
phase of the effort three distinet components were defined. The first was an adaptation of
Cybemet’s Data Collection and Analysis Environment {DCALE), which was used early in
the profect to provide the data framework for the limit checking and expert systems
architectures. Expert systems require data stored in a “blackboard™ system. The DCAE
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provides this capability over a distributed network of data collection, storage, and routing
PrOCesses.

The second architecture was for date pre-processing.  The baseline approach was to
browse data in the “blackboard” for limit ranges. For cach datum, a low and high range
was checked, The Boolean effect for each datum was “Out-of-Range-Low™, “QOut-of-
Range-High”, or “Inwange”.  Either “Out-of-Range-Low” or “Out-of-Range-High”
represented a fanlt cuc.

1.3 Project Methodology
The entire Phase [ project consisted of four phases

1) The project startup phase, which provided backg muﬁd information on adaptive
instractional systems, learning styles, and model- ased reasoning systems

2) The design stage, which concentrated on creating model rcpmzcmmmm a

learning procedure, and a system architectare.

3) The development stage, which concentrated on the compilation of a proof-of-
concept adaptive instructional systerm.

4) The planning stage, which used the information obtained from the Phase |
research to-develop a plan for utilizing the technology in the proposed system.

1.4 Proicct OQuteomes

The Phase I project has successfully completed the project goals established above. We
have achieved these goals by concentrating on the incremental Phase 1 objectives. The
Phase [ objectives and how they have been accomplished are outlined below:

1) Develop Helicopter Flight Model for Model-Based Reasoning Diagnostic Engine
(MBRDE). We have researchied and developed a model deseribing the flight model
for hovering a helicopter. This model accesses the helicopter operating parameters 83
an input to the diagnostic engine. Since the OpenSkies System already contains a
well-developed model for the TH-57 helicopter, we used this flight model for this
development effort, This step also defines the possible errors encountered in hovering
the helicopter,

The helicopter model in OpenSkies consists of three high-level systems: the landing
gear, the engine, and the rotors. The landing gear simply represents the helicopter’s
interaction with the ground, and is modeled using a basic spring/damper system. The
engine system is also straightforward, and represents the Bell JetRanger's three
throttle settings (off, idle, and open), which in turn controls the rotor rotational
velocity,  Fuel (and. its weight) also is a part of the engine system, as well as
accompanying fuel use that depends on the engine RPM and environmental factors.
The most robust system is that which models the rotors. Both the main and tail rotors

are modeled complexly to allow for factors such as wind speed, ground effect, rotor

torque, available engine power, and helicopter velocity.

Frak

.
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The controls of the helicopter work as a real belicopter: the rudder affects the il
rudder, the cyclic differentially pitches the blades of the main rotor, and the collective
modifies the pitch of all the blades of the main rotor. The end effect is that the model
for & helicopter in OpenSkies is complex enough to represent piloting requirements
such as jn-gronnd-effect to  out-of-ground-effect transitions, changing rudder
requirements depending on collective, and forward blade stalls. However, the model
also has the ability to have artificial controls applied to it to simplify operation. For
instance, having the model antomatically adjost the rudder, maintain a hover, or
increase collective with changing cyclic. This creates a helicopter model that runs
from completely autopilot controlled to completely pilot controlled,

Integrate Model-Based Reasoning Diagnostic Engine into the OpenSkies Virtual
Envirenment Training System. This task entailed converting the MBRDE into 4
dynamically linked library for inclusion into the OpenSkies system. This task has
been completed. We have already adapted the OpenSkies system in order to parse the
data as input to the Model-Based Reasoning Diagnostic Engine. This system is based
on of OpenSkies High Level Architecture (HILA) Interface,

Enhance OpenSkies Virtual Environment Training System to Focus the
Student’s Effort in Deficient Areas. This task defines some of the adaptive
capabilities of the OpenSkies system. We have modified the scenario scripting
capability to handle branching to other parts of the scenario as well as adding
capability for answering questions and providing tutorials. Further, we have designed
new capabilities for more interactive capabilities in the simulation. This will allow us
to quickly redefine new input data from outside sources for creating new types of
scenarios.

Demonstrate Adaptive Training by Creating a Scenario for Hovering a
Helicopter in OpenSkies. We have developed a specific scenario for hovering a
helicopter that includes branches to earlier parts of the scenario, question and answers
and a tutorial for hovering the helicopter.

Integrate System into OpenSkies Simulator. For this task, we integrated the
adaptive instroctional gystem into the OpenSkies simulator.  Demonstrating such
intezration illustrated how the adaptive instruction system can be used as a human
computer interface, and helps us design the Phase 11 system. We specifically

developed a basic system for training on a virtual helicopter,

Produce a Final Technical Report, This report completes this task. The goal of this
task was to fully document the results of the project. We will use this information to
arrive at a complete design and methodology for the Phase I system. It will include
recommendations for hardware components, a mapping of appropriate algorithms to
this hardware, and an analysis of the proposed system’s capabilitics. It will also
contain a concept of operation, course level parts descriptions, and estimated level of
software/fivmware development, integration, and maintenance.
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The following section provides details of specific aspects of the automatic learning
system. Meeting all of these objectives has resulted in a fundamental understanding of
the issues and solutions in performing recognition of dynamic and static gestures on
inexpensive personal computer platforms. We will use our understanding acquired during
this Phase I to address the integration of the adaptive instruction system into the military's
system,

1.5 Developed System

As detailed in Section 2, our system takes a teaching model created by the instructor and
a model designed around the student to create a final instructional model. The system is
used as follows:

1. The instruetor determines what aspects of flight simulation he would like to teach and
develops an instructional model for the given scenario.

2. The student begins to fly the scenario while the simulator begins to create a model
about him and his actions.
3. The simulation generates remedial feedback for the student in order to improve his

performance.
4. The simulator updates the student model as the student trains.

5. Steps 3 & 4 repeat until training is finished.

1.6 Commercialization

The proposed technology will be leveraged into Cybernet’s OpenSkies Massive
Multiplayer training and gaming simuolation business. Cybernet has developed a
massively multi-player simulation technology for air, sea and land game and simulation
play’. While- this technology was originally developed for low cost government
simulation for training, the Company plans to adapt the technology to revolutionize the
consumer network gaming and flight simulator industry. The Company plans to distribute
its OpenSkies simulation products at retail into the market, which is currently defined by
Microsoft Flight Simulator, ProPilot, and Flight Unlimited. To make a significant inroad
to this market, Cybernet plans to sell the product not as an end to itself, but as the entey
point fo a new game playing experience.

Cybernet plans to revolutionize the gaming industty by coupling the experience of
leading military commanders with the on-line flight gaming experience. The military
commander will structure a training process which ‘recruits’ players, gives them flight
training modeled after current military doctrine, and then leads graduates in a multi-player
interactive war game.  Because the technology is compatible with Government training

' The complete business plan is available upon request.
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needs Cybernet plans to sell this product into the Govermment space for integration and
raining purposes as well,

2. Phase I Work

In addition to the original Phase I Work Plan items, we have extended our work to gain a
better understanding of student learning styles. This work has allowed us to develop a
working Phase I concept that will be adaptive to many different types of students,

Learning styles are defined as the composite of characteristic cognitive, affective, and
physiofogical factors that serve as relatively stable indicators of how a learner perceives,
interacts with, and responds to the learning environment (Keefe, 1979). Included in this
definition are “cognitive styles,” which are intrinsic information-processing patterns that
reprosent a person’s typical mode of perceiving, thinking, remembering and problem
solving (Messick, 1969). While there are over 250 conceptually distinet approaches to
instruction (Parloff, 1980) all vying for distinction as the most effective, we will analyze
the foremost models, and incorporate them into & model that addresses a military
audience.

We have also extended our rescarch on adaptive model-based reasoning. This research
will allow us to enhance our current Model-Based Reasoning Diagnostic Engine to create
a more adaptive system,

The MBRDE framework provides a generic approach to diagnosis of learner behavior, a
task that is often considered to be too complex to be costeffective.  The technigues
developed facilitate model-based reasoning about the learner’s problem solving behavior
on the sole basis of a qualitative simulation model. Hence, by only specifying the input
for the qualitative simulator, a hierarchical set of domain models can be automatically
generated,

The diagnostic process traces errors made in individual reasoning steps. This focus on
errors in the learner’s problem solving behavior strongly influences the educational
approach of the system. People learn from their errors. This view on education is
different from the one underlying most diagnostic approaches, Instead of focusing on
tracing misconceptions in the learner’s knowledge that can be remediated, we support the
learner's capability of self-repair.

2.1 Intelligent Systems

From their inception, intelligent systems have been applied to the task of automated
dingnosis.  Diagnostic expert systems were among the first successes of artificial
intelligence, and played a key role in the development of the field.

As the devices under diagnosis grew more complex, diagnostic system programmers
could no longer be assured their a priori knowledge of how the devices might fail would
be complete. It became apparent that expert systerns’ brittleness - in the case of
dingnosis, their inability to diagnose novel faults -~ would limit their usefidness. In order
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to diagnose these unpredicted (or *unknown™) faults, a more generalized diagnostic
approach was needed. This need led to the application of the model-based reasoning
paradigm to the task of automated device diagnosis.

The complexity of the diagnostic task has increased in ways beyond the number of
components and interconnections in devices under diagnosis. Intelligent systems are
called upon to provide diagnoses in applications where time is an increasingly critical
resource, ranging from nuclear plant control to student health and status monitoring. In
such real-time applications where operators must be notified of detected anomalies and
their probable cause(s) in a timely manner, model-based diagnostic systems are faced
with a tradeoff between diagnostic speed and detail.  Simply put, the more accurate and
detailed the device model, the more time will be required to reach a diagnostic
conclusion,

Noting the similarity between this diagnostic tradeoff and that with which realdtime
planning systems must contend, we have looked to anyfime algoritiyns for inspiration.
This led to the development of a model-based diagnostic framework that allows 2
diagnostic system fo produce a diagnostic response at any time, with the response
becoming increasingly accurate as more processing time is allocated to the diagnostic
task.

Cybernet’s Model-Based Diagnostic Engine was origirally developed under an Air Foree
contract to deteet and diagnose student behavioral anomalies. We intend to use this
model-based system to define a training model for helicopter flight that will allow us to
determine in real-time where the student is making errors and adapt the training system to
focus on these érrors. A simple model of the helicopter flight can be defined as follows,

Inerease Collective
Poll Up
o
.
l Tnerease
Throttle
iﬁj‘f?“fmﬂ’f < M5 Foot Hover Rolling Hover
Aesout L T+ Adjust Rudder |
\\, Adjust Cyclic

Figure 1: Simple Model for Helicopter Flight

6
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If an instructor were required to develop an expert system that checks for each individual
case, the training system could possibly take weeks or even months to develop. Instead
we have the instructor develop a simple relational model of the flow of proper flight of
the h@’ismpter The student follows the flow of model and at any time that the student has
incorrectly operated the helicopter, the diagnostic engine will determine where the error
was by tracing back through the model. The diagnostic engine is informed of an error in
the flight by the OpenSkies engine that is watching for nmsui events in the scenario, The
diagnostic engine then polls the simufator and traces through the model to determine
where the student made an error. At this point, the training system will then be able to
present the different options to the student based on the type of ervor.

For example, OpenSkies recognizes that the student did not make the Rolling Hover, The
Model-Based Reasoning diagnostic HEngine (MBRDE) then traces back through the
system and determines that the § i, Hover was most likely not properly executed. The
system then looks for faults in the Increase Collective, Adjust Rudder and Adjust Cyclic
tasks. Assuming no faults are found in Adjust Rudder and Adjust Cyclic and a fault was
found in Increase Collective, the system assumes an error either in Pulling Up or
Increasing the Throttle. The system checks for faults in each of these and finds that the
pilot produced too much throttle. ‘

At this point the MBRDE informs OpenSkies that the problem is in the Increase Throttle
section of the Increase Collective and the system can then present the student with several
options. The system could let the student ask a simple question, ask for a tutorial or point
out 1o the student that the gavge is working improperly.

This research will allow Cybernet to develop this adaptive training system and
incorporate it into our OpenSkies virtual reality environment for both demonstration of
the technology and for eventual commercialization of the product.

2.2 Model-Based Systems Overview

For this proposal, we will talk about component-oriented systems. Such systems are
concerned primarily with the structure of the artifact in question.  An example of a
component-oriented system is ENVISION [de Kleer & Brown, 1984]. ENVISION begins
with a description of the physical structure of a device in terms of physically digjoint
components and conduits connecting those components, a set of behavior rules for cach
component, and an input force applied to the device, The system then seeks to predict the
behavior of an entire device as a sequence of possible future states along with complete
causal analysis for the behavior.,

2.3 Diagnostic Model-Based Systems

The basic paradigm of model-based reasoning for diagnosis can best be described as the
interaction of observation and prediction [Davis and Hamschier, 1992]. Observations of
the system being monitored indicate what the device is actually doing, and predictions
based on an internal model of the system indicate what it is supposed to be doing.
Model-based reasoning is based on knowledge of the structure and behavior of the device
under observation. Model-based systems include a model of the device to be diagnosed,
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which is then used to identify the cause(s) of the device's failure. The gystems essentially
perform internal simulations that geperate predictions of how the device should behave.
The systems also observe the device's actual behavior, and compare these observations
with their own predictions. [Davis & Hamscher, 1992] depicts the interaction between
prediction and observation that characterizes model-based diagnosis.

Actal | Observed § Predicled Model
Device | OBSERVATIONS | Behavior | Behavior " PREDICTIONS §
[ | T SPRURNT— |

/
\/

DISCREPENCY

Figure 2: Observations and Predictions in Model-Based Reasoning

Any differences between prediction and observation indicate possible faults,  As
deseribed in [Davis and Hamscher], the diagnosis task is one of determining which of the
device's components could have failed in a way that accounts for all of the discrepancies
observed. Because model-based systems draw their conclusions based on knowledge of a
device's behavior and its structure, they are often said to reason from "first principles”.
This view of model-based reasoning is developed in [Reiter, 1987].

Three key points regarding model-based diagnostic systems are set forth in the
introductory chapter of [Hamscher et al,, 1992}:

1. Knowledge about the internal structure and behavior of a designed artifact
can be used to diagnese that artifact.

2. Model-based diagnosis programs generate, test, and diseriminate diagnnses.
3 Modeling is the hard part of model-based diagnosis.,

The prineiples of model-based reasoning are well suited for porforming device/system
diagnoses. Model-based reasoning has become one of the most effeciive means of
performing automated diagnosis on systems or artifacts. There are three key issues in the
application of model-based approaches to the diagnosis of engineered artifacts:

¢ The knowledge used 1o drive the diagnosis;
e The diagnostic procedure;

» Modeling the real-world artifact(s).
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2.4 Knowledge Used for Model-Based Diagnosis

Traditional diagnostic methods, ranging from fault trees o expert systems, have as thelr
foundation an enumeration of possible faults, or, the way things might fail. Model-based
diagnosis presents a significant departure from this line of thinking. The foundation of
model-based diagnosis is the prineiple that knowledge about the internal structure and
behavior of an artifact can be used to diagnose that system. This approach first appeared
in the INTER [de Kleer, 1976] and SOPHIE [Brown et al., 1982] programs, which were
both designed to perform troubleshooting of electronics systems,

Steps in Performing Model-Based Diagnosis -

Model-based diagnosis can be broken down into three distinet steps, as described in
[Davis and Hamscher, 1988]:

L. Hypothesis generation.  Given a discrepancy between the way an artifact is
operating and the way it ought to be behaving, the first task s to determine which
components could have failed in such a way as to create the observed discrepancy.
Among the techniques used to generate a list of candidate components are tracing
through an internal representation of the system structure beginging from the
location where the discrepancy is noticed and using information from nmultiple
diserepancies to constrain the generation of the hypothesis list.

FoF

Hypothesis testing.  Once the list of candidate hypotheses has been generated,
each candidate component must be tested to see if can account for any or all of the
observed discrepancies. Among the techniques used to perform hypothesis testing
are fault-model simulations and constraint suspension.

Lad

Hypothesis discrimination.  Finally, the diagnostic gystem must make some
distinction between those hypotheses that survive the test stage.  This process
involves gathering additional information about the device, through such
techniques as probing (making additional observations) or testing (changing
inputs to the system and make observations in the new situation).

Diagnostic algorithms employed to perform the specific diagnostic reasoning in model- l
based diagnostic systems are based on standard Al techniques, and include:

« Theorem proving;

«  Heuristic scarch;

¢  Qualitative simulation;

s Bayosian networks.

2.5 Maodel Accuragy

The most critical issue in model-based diagnosis is correctly modeling the artifact under
diagnosis.  Inherent in the use of a model for diagnostic reasoning is the implicit
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assumption that the model is correct, and therefore that all discrepancies between
prediction and observation can be traced back to faults in the device. As stated in [Davis
and Hamscher, 1988], “The assumption that the model is correct is in fact necessarily
wrong in all cases. 1t is wrong in ways that are sometimes quite obvious and sometimes
quite subtle. Simply put, a model is a model precisely because it is not the device itself
and hence must in many ways be only an approximation. There will always be things
about the device that the model does not capture.”

A significant challenge in defining artifact models is determining the correct level of
abstraction at which to model the artifact. The selection of the models® *level” involves a
tradeoff between the accuracy of the model and its computational complexity. Simply
put, the more detailed the models; the harder (and slower) they are to work with.

General-purpose models are constructed using standard Al technologies such ag:
s Predicate logic;
¢  Frames;
«  Constraints;

« [Rules,

2.6 Modcel-Based System Design
Model-based systems typically use:
1. Observations of the device, typically observations at its inputs and outputs.

2. A deseription of the device's internal structwre, typleally a listing of its
components and their interconnections.

3. A description of the behavior of each component.

2

These components then interact previously described to permit the system to detect
discrepancies and to then generate, test, and diseriminate its hypotheses as to what might
be caunsing the discrepancies. There is no standard, or typical, configuration for model-
hased systems, A wide variety of Al techniques are used to create model-based diagnosis

systems, including: )

» Knowledge Representation:
» predicate logic
» production rules
+ slot-and-filler
+ frames
¢ gemantic nets
« constraints

« Inference Engine:

10
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« theorem proving

« heuristic scarch

« qualitative simulation

« Bayesian networks
Discussions of these Al techniques can be found in [Bundy, 1990], [Rich & Knight,
19917 and [Shapiro, 1987]. ‘
2.7 Advahtage& of Model-Based Diagnostic Systems

« Among the many advantages of the model-based approach to implementing
diagnostic systems are the following:

o Ceneral reasoning scheme eliminates need for specific expert knowledge
+ Device independent

»  Works from an information source (the design) typically available when the device is
first manufactured

s  Can be less costly, since the model is often supplied by the deseription used (o design
and build the device

« Avoids the data acquisition boftleneck associated with expert knowledge capture and
engineering

»  Explanatory capability is inherent in the paradigm

2.8 Disadvantages of Model-Based Diagnostic Systems

Perhaps the greatest digsadvantage of the model-based appronch is summed up in the third
main point taken from [Hamscher et al., 19921 meodeling is the hard part of model-based
diagnosis. The premise model-based diagnosis is that if the model itself is correct, then
any discrepancies between the system's predictions and its observations arise from -- and
can be traced back to « defects in the device itself. The authors in {Hamscher et al.],
however, argue, "the assumplion that the model ig correct is in fact necessarily wrong in
all cases.” Simply because it is a model, and not the actual device, it is an approximation.
There will always be ways in which the model is either incorrect {(contains errors in what
does model) or incomplete (fails to model some aspect of the device).

As a result, applications where the device in question involves interactions that are too
complicated or too subtle to be predicted with current modeling techniques may not be
appropriate domains in which to apply model-based reasoning when implementing a
diagnostic system.

2.9 Examples of Model-Based Diagnosis

This section describes several model-based diagnostic systems, Also included are several

major works in modeling, simulation, eic. These additional works, while not complete

il
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diagnostic systems, provide importani diagnostic tools or theoretical foundations upon
which much of the current model-based diagnostic research is built.

« DART ,
DART [Genesereth, 1984] was one of the systems to use deep functional knowledge in
the design of expert systems. DART was a prototype for a diagnostic system in the
domain of digital circuits. It uses functional models of components instead of diagnostic
rules to diagnose a problem,

Both the representation language and the interface utilized by DART were relatively
device-independent.  Predicate caleulus was used to encode design descriptions of
devices under diagnosis, and resolution residue (a form of theorem proving) was used
gencrate both sets of suspeet components and test to confirm or refute fault hypotheses,

DART's problem solving was formulated using several simplifying assumptions:

1. Connections in the device are assumed to be working properly, s it seeks faulty
components to account for observed fault symptoms.

b

Faults are non-intermittent - components behave consistently for the duration of
the diagnosis.

3. ‘There is only a single fault in the device.
¢ GDE

GDE [de Kleer & Williams, 1987] retains the assumptions #1 and #2 from DART, but
attempts to relax assumption #3. The challenge in diagnosing multiple faults is that the
fhiypothesis space grows exponentiafly with the number of faults, as the syster must now
consider sets of faults rather than individual fiaults. GDE addresses the complexity of this
problem with a combination of assumption-based truth maintenance and probabilistic
inference. Diagnoses are generated in GDE using a kind of constraint propagation.

* Diagnosis From First Principles

Compared to DART and GDE, Reiter's theory of diagnosis from first principles [Reiter,
19871 is a more general approach. It requires only a generab-purpose theorem prover to
formulate hypotheses.

Reiter addresses the overall diagnostic problem, which he states as:

Suppose one is given a description of a system, together with an observation of
the system's behavior which conflicts with the way the system is meant to behave,
The diagnostic problem is to determine those components of the system which,
when assumed to be functioning abnormally, will explain the discrepancy benween
the observed and correct svstem behavior,
Reiter's theory requires only that the system be described in some suitable logie. The
theory involves working from a system description {SD) featuring a finite set of system
components, and a set of observations (OBR). Both SD and OBS are finite sets of
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sentences in first-order predicate logic (which includes both functions and identity).
{Tackson, 19901
Reiter sites the following as being the contributions of the theory:

1. The definition of the concept of diagnosis, including multiple fault diagnoses,
ased upon the preservation of the consistency of the system description and its
observation.

3

The explicit use of the AB predicate for representing faults and possible
relationships between faults.

hid
o

The ability of the theory 1o accommodate a wide variety of logic.

S

The algorithm DIAGNOSE for computing all diagnoses.

Lo

Characterizations of single fault diagnoses and their computation.

Various results about the effects of system measurements on diagnoses.

I

The non-monotonic character of diagnosis, specifically its relationship o default
logie.

2.10 Cybernet’s Approach to a Model-Based System

In order fo create the model, instructional and student Jmpue must be supplied. The model
will then contain the input information, in addition to other information it computes from
the input. We will first discuss the needed input and then proceed to a discussion of how
this input is expanded into the actual full-blown model.

The first step in our Phase Il process s to create a library of simple helicopter
tasks that can be easily combined to generate more complex tasks, We will coordinate
pur model generation efforts with a registered helicopter instructor in order (o ensure
accuracy. For example we would ¢reate a simple component called “fly straight’. Inside
the “fly straight’ component would be other components such as the colleetive, cyclic,
and rotor pedals, Values would be assigned to each component, and an adaptive decision
tree would be created within “fly straight’, Several other components such as “bauk left’,
‘hover in place’, ete... would be created to form a basic library that any instructor can use
o form more complex actions. This would turn the instruction model creation into a
quick and easy drag and drop scenario. In Figure 7, you can see an example of one such
component - in this case, the collective. Note that the feedback loop is shown in gray.
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Figure 3: An Adaptive Feedback Collective Component’

After the instructional model is complete, we will generate the student model, Currently,
we plan on having each student take a Productivity Environmental Preference Survey
(PEPS) before training. The PEPS is a 100 item self-report questionnaire that identifics
individual adult preferences for conditions in a working and/or learning environment,
The PEPS will give us a good idea what a student’s preferred learning style is and allow
us 10 generate an accurate student model. The student model will be composed of the
student’s preference for cach of the 15 different learning stimuli such as motivation,
persistence, perceptual, efe,.. These stimuli are covered in depth in the leaming style
section. Primarily, the student model will affect how feedback and remediation, as well
ag initial instruction, are administered to the student.  For instance, @ student who
demonstrates a visual preference will receive instruction and feedback via visual
methods, whereas a student who shows an auditory preference will receive audio
instruction and feedback, While this may seem. trivial from the point of looking at only
one preference, when all 13 stimuli are referenced in the student model, the approach to
ratning will vary greatly,  Afler the student model is generated, it will then be
incorporated with the instructional model to create a full model that will be used
instruct the student (Note that while the instructional model will need to be created by the »
instroctor, the student model will be automatically generated),

Once the full model is ready, it will be used by the MBRDEOpenSkies simulator to train
the student. The model will provide the simulator with the optimum way of tralning the
student based on the student’s learing style preferences. Factors such ag the student’s
perceptual, motivation, and structure preferences are Incorporated indo how the
instructional information is presented.  More importantly, now that the instructional
model has been combined with the student model, the feedback from the instructional
model will be passed through the student mode] before being presented to the student. As
the student flies the training scenario faid out by the model, he’ll be given adaptive
instruction by the simulator based on his performance and the learing style aspect of the
model.  However, this is the most complex aspect of the proposed Phase 11 solution,

14
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Since the instructional model is created out of the basic flight building blocks, the
building blocks need to have the adaptive feedback trees built into them. As the student
progresses through each part of the instruction muodel, his performance will be gauged. If
his performance is not within acceptable limits, remedial feedback will be issued.

3. Model-Based Reasoning Diagnostic Engine

While rule-based reasoning and set covering algorithuns can provide quick and accurate
diagnoses of complex systems, they are limited to known failures and generally cannot
respond to unknown conditions. This Hmitation greatly reduces their capability, since the
number of factors involved in any complex task can quickly grow beyond the bounds of
an expert system.

Model-based reasoning systems use a technique that bases their diagnoses on knowledge
of the actual system models and behaviors. This techmque allows for the diagnoses of
problems that were unanticipated when the system was developed. Since a3 many failures
are unforeseen, providing the monitoring agents with the capability to determine the
errors is critical to the operation of these complex tasks.

However, model-based systems typically de not provide anytime diagnoses, since
traversing an entire complex model will require large amounts of compute time. What we
present here is a system for model-based reasoning that allows for the anytime diagnosis
of errors.

3.1 Anytime Algorithms

Anytime algorithms were originally implemented to solve the problem of the limitation of
knowledge-based systems with time consuming algorithms and variable performance.
Anvtime algorithms show an increasing quality of results gradually as computation time
increases. This provides a tradeoff between resource consumption and output quality. The
quality of the.diagnosis is defined by the depth of the analysis or the certainty. Each of
these methods of obtaining quality may be developed in several different ways, For
example, as an anytime algorithm progresses, it may analyze the system in greater and
greater detail. It may drop deeper down into the systemt hierarchy as computational time
increases, providing diagnoses in varying steps. Another method to obtain this faster
diagnosis is to use simpler behavioral models for ealoulating results at each component of
the total algorithm. The algorithm would then use more complex behavioral models as
mare compute time is provided.

Anytime algorithms are normally defined in two different methods, interruptible and a
defined computational time. The interruptible method provides a more up to the second
dingnosis, however it is much more difficult to implement. In this case we decided to
develop an anytime algorithm using the defined computational fime with a hierarchical
interface. This allows us to provide for an interruptible style for a fast, less accurate
diagnosis and a more accurate diagnosis as compute time is made available,
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3.2 Anyiime Diagnosis

QOur dingnostic framework can be characterized by its use of (1) bottom-up modeling
resulting in the creation of a hierarchical model of complex devices under diagnosis; and
(23 1op-dmen traversal of the model resulting in the continuous refinement of diagnoses
generated.

Bottom-Up Hieravchical Modeling

Qur approach to device modeling emphasizes abstraction of the device’s components to
create a hierarchical model of the device under diagnosis. This model permits diagnoses
to be produced at multiple levels of detail.

Modeling Primitives. Borrowing from graph theory, the basic primitives fmm which our
models are constructed are components and interconnections. In addition, we have added
a data primitive to denote observable outputs generated by the device under diagnosis.
Initial Representation. Using these primitives, a device s first modeled at iis Jowest
level of abstraction, or its greatest amount of detail.  After the components and
interconnections are established, the data points are added which connect observable
outputs to their origins in the device.

Data Origins. The interconnections from which data values originate are noted and
entered into the device's database, These interconnections will be used to build, and also
to prune, the diagnostic iree that is created as the device modef is traversed. Once the
interconnections have been recorded, the data values are associated with the source
components of those interconnections.

Abstraction. Once the low-lgvel representation has been established, repeated groupings
of components into successively larger super-components create nodels of the device at
higher levels of abstraction,

Data Tracing. As groups of components are replaced by single components at higher
levels in the hierarchical model, data locations are passed up the hietarchy. The end
result is that for each data value, a list is established of its source component at every
level of the hierarchical model.

Example, Pe. §

This bottom-up modeling process is illnstrated in the following example. Figure 4 shows
the initial representation 0{' a device. At its level of greatest detail, this device consists of
twelve (12) components, eighteen (18) interconnections, and five (5) data points,

16
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- Figure 5: Data Origins
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Figure 4: Initial Representation
Figure 5 fists the data origins derived from the initial represeatations.
Figure 6 shows the initial data associations. These associations link the data values with
the components from which they are output.
Figure 7 enumerates the data associations after the initial association step.

Figure 8 shows the first grouping of the abstraction process. The componenis are
grouped to ereate three (3) super-components consisting of four (4) sub-components each.

TME G
T H
TLME L
Tidta:
TG

Figure 6: Initial Data
Association Lists e

Toked
Figure 7: Initial Data-Component Associations

As the abstraction process proceeds, a component hierarchy is constructed in a bottom-up
manner. The lowest level of this hicrarchy is shown in Figure 9.

As this first grouping is made, the data-component associations are propagated up the
hierarchy, such that each data value is now associated with its source component at this
newly created level of this hierarchy. The results of this propagation of associations are
depicted in Figure 10,

17
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Figure 9 enumerates the resulting data association lists as they are kept in the device’s
description database.
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Figure 8: Updated Data
Associafion Lists

e et e RS e

Figare 9: Second Data-
Component Associaftons

Figure 10: First Component
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! %

R
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Figure 11t Ianitial  Component
Ficrarchy

The first iteration through the bottom-up abstraction modeling sequence is now complete.
This process ceases when a single-component level has been created as the top level in
the device model, as shown in Figure 12,

TLML G NP X B

LM LN, P

LML O P

TLMA L O, P - S
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Figure 12: Final Data

Assoriation Lists B S
s e b.'ii'(m‘m' ke et

Figure 13: Final Representation
N
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Figure 12 gives the final data association lists, corresponding to the final top-level
representation. Bach data value s now associated with its source component at each level
in the mode! hierarchy.

Finally, Figure 14 depicts the final component hierarchy resulfing from the bottom-up
madeling process,

Ty T I
ABGCT £ F GH [ B O

Figure 14: Final Component Hierarchy

Top-Down Diagnostic Refinement

The second half of our anvtime diagnostic framework counsists of an algorithm Jor
fraversing the model with the goal of deriving a tree of components making up a list of
potential diagnoses for any given data anomaly. This model traversal algorithm provides
an immediate high-level list of possible components in which an error could lead to the
data anomaly in question, and also allows that list of components to be refined
continually as time permits, Key elements of this process follow.

Propagation. The first step in deriving a wee of components that each represent
patential diagnoses is to propagate a fault marker from the anomalous data value back
through the model.  This propagation is repeated on a sub-component basig as the
component tree is expanded.

Replacement.  Components in the diagnostic tree are replaced with their set of sub-
components,

Expansion. Sets of sub-components are expanded to form a more detailed diagnostic
tree. The fault markers are propagated through the set of sub-components o determine
their proper order in the diagnostic tree, which muy result in the insertion of a branch into
ol

Disconnection.  As a set of sub-components is expanded, an existing branch in the
diagnostic tree may no longer remain connected, As the more detatled propagation takes
place, fault markers will not necessarily be passed to all paths of a branch.  Those
branches to which a marker is not passed will become disconnected from the diagnostic
tree, and will therefore be removed from further consideration.

Pruning, The diagnostic tree is pruned using nominal date obsurvations.  As fault
markers are passed from component to component along their interconnections, the
propagation ceases when an interconnection has been noted in the device database as the
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origin of a data value and that value has been observed to be within its nominal operating
range.

Example, Pt 2

This top-down process of building a tree of potential diagnoses is illustrated in the
foltowing example, which uses the device previously modeled,

Given the observation of an anomaly at data valee TLM3 with all others OK, the initial
propagation through the highest level of the hierarchy is shown in steps (a), (b), and (c).
Note that “~ is used to denote a path termination.

{a) M3
{1y M3 - P
(€) M3 -p P -~
In step (d) component P is replaced with its sub-component group (O,N,M).
(@ M3 -» ONM) > ~

In step (¢) the fault marker is propagated through group (ONM). The group is
expanded, and a branch is added to the diagnostic tree.
L~ O <
@ : Ay

In step () component O is replaced with its sub-component group (1,1,K,L).

« LT TN
a3 - (KL
(B RS

In step (g) the fault marker is propagated through group (LLKL). The group is expanded,
and the diagnostic path conneets to component N but not to componeni M.

Mo
W3 - LK
(&) AN

In step (h) compouent M and anything that follows it in the diagnostic path are
disconnected, as they could not be the cause of a data anomaly at TLM3.

(h} HME 8 L o K o N i
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In step (i) component N is replaced with its sub-component group (LF.GH).

() UM3 b L -k K -» ERGH e -

In step () the fault marker is propagated through group (EF,GH). The group is
expanded, and a branch is added to the diagnostic tree.

B3 o & W K o i/

Finatly, the path from component F to component is (3 is pruned from the diagnostic tree.
Recall from our previous model-construction example that data value TLMI originates
on the interconnection G=2F and has component G as its fowest-level source.  Since
TLM! has been observed to be within its nominal operating range and no other
anomalous data observations have component G as their origin, fanlt marker propagation
will not pass from F to G, The final diagnostic tree, consisting of components that are
potential diagnoses for the observed anomaly at TLM3, is shown as step (k).

G{} IS g L W K oI P ol £ =

3.3 Hierarchical Analysis

The internal model representation builds a tree that 3s used 1o represent the student at
different levels of abstraction. The root node represents the student as a unit, while the
suecessive lovels are increasingly more detailed views of the student. For example, if the
tree gonsists of the root R owith two children A and B, then at abstraction level 1 the
student is simply R, while at abstraction level 2, the student is the set of components
consisting of A and B.

At each abstraction level there is a graph that represents the logical dependencies of the
components at that level. The program starts at the top level and proceeds until the
bottom level is reached or time bas run out {other alterpatives are possible, such as |
starting at a certain level of abstraction, or skipping some levels, though the concept
remaing essentially the same), At cach level, the program constructs a Possible Cause
List for each of the bad data points by traversing the graph at that level. The Possible
Cause List for a bad data point is a list of components such that if any one of them is
defective, it could lead to the bad data under consideration. Posyible Effect Lists are also
constructed, For a given component, its Possible Effect List is the list of bad data that it
could be effecting. Then the program develops a number of hiypotheses that account for
all the bad data, and assigns probabilities to thi¢ hypotheses. A hypothesis is in fact just
an appropriately chosen sct of components. Note that Possible Cause lists refer o one
particutar data point, while a hypothesis takes all the bad data points fnfo consideration.
Details concerning what makes a set of components a hypothesis will be discussed later.

51
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Naote that this algorithm proceads in an “anytime” fashion. The computations are done at
each level, thus providing a complete, though possibly vague, diagnosis at each level; in
addition, the computations at successively deeper levels provide increasingly more
detailed diagnoses. The program essentially has two parts. In the first part an appropriate
mode! is constructed from the given information. The second part uses this model o

draw conelusions. The first part is done prior to-any serious coneern over time efficiency,
while the second part is expected to be vun in real time.

34 Intersd Model Construction

In order to create the model (the first part of the algorithm), the algorithun needs to be
given particular information, the i, The model will then contain the input
information, in addition to other information it computes from the input. We will first
discuss the needed input and then proceed to a discussion of how this input is expanded
into the actual full-blown model.

3.5 The Input

The input ( and the model for that matter ), can be broken into two agpects, a single
hierarchical tree and a set of dependency graphs. These two aspects are conceprually
independent, but physically dependent. By this we mean that graphs and the tree can be
defined and conceptualized without the other, but that the actual pieces they contain arc
shared; in particular. some nodes can be shared, constituting what is a physical-like ( of
course #’s not really physical!l) dependency. However it is probably simplest to
understand the tree as existing first, with the graphs built around the tree; so in this sense
the tree is independent of the graphs, but the graphs depend on the tree. The word “rode”
and “vertex™ will be used to refer to the same entity, though the former when speaking of
a tree and the latter when speaking of a graph.

3.6 The Tree

We now further develop the idea of how the tree Is used. As mentioned in section 4.2,
the tree is used to represent the student at different levels of abstraction. If node P has
exactly the children A, B, and C, this indicates that P is a component that is made wp of
the three components A, B, and C. To say P is made up of 4, B, and ¢ means that 7
coniains thexe 3 nodes and P containg sothing move than these 3 nodes; thus P is no
mote than another name for the set containing A, B, and €.

«

Note that the tree does not necessarily represent something physical. The tree provides a
hierarchical categorization of the physical student. Consider an example tree T in which
the node P has children A, B, and C. It conld be the case that the components represented
by A, B, and C are physically contained in a box and so P could be seen as corresponding
to something physical, namely, the box and its contents. However, it could be the case
that A, B-and C are simply 3 different components with no apparent physical relatipnship.
Yet there could be a reason to categorize these 3 components into a single super-
camponent P, In this case, though A B, and C could be physical, P is not; rather, P is a
category that fncludes 3 physical objects A, B, and €. In general, we would expect the
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leaf nodes to be physical objects and the non-leaf nodes to be absiractions or
catgporizations.

Each component of the student has a probability of being defective. Actually only the
probabilities for the leaf nodes are needed and from these probabilities the probabilities of
the non-teaf nodes ean be computed.

3.7 The Set of Graphs

The tree introduces a number of nodes, indicating how these nodes relate to one another
as far as containmient.  The set of graphs then expands upon this to indicate how the
components depend upon each other.in terms of some other characteristic. These nodes
are the point of physical dependence between the tree and the set of graphs. We discuss
nodes in more detail later.

We assume that we are given a repregentation of a student that indicates the components
and the dependencies between the components. This representation would typically be a
schematic diagram of the student circuitry with additional dependencies, such as
temperature, indicated. This representation should somehow (automatically by computer
program or by user) be converted into a set of directed graphs S, in which the vertices of a
graph represent the components of the student ( already defined by the tree ) and the
edges of a graph represent the logical dependencies between the components.

First we give an informal explanation of this concept.  The set of graphs § could for
example contain two graphs VT and TP that represent the dependencies voltage and
temperature, respectively, We will call voltage and temperature dependency types. An
edge in the graph VT with source node s and target node t indicates that component s
depends on component t, in terms of voltage. We will have a separate graph for each
dependency type: the vertices will be the same for these graphs since we are still
considering the same components, though the edges, which represent relationships, can
be quite different.

Formally, the program will be given a set of dependency types { or we could call these
graph names ) Di,..., Dy It will also be given a sct of graphs A' = (VL E), ..., A7 =

(VLE" that indicate the component dependencies for each of the dependency types. Jf

component A depends on component B, in terms of dependency type Dy, then the graph &'
should have an edge from vertex 4 to vertex B. I order for A to depend on B, B needs to
be giving some Kind of output to A, so in ferms of the direction of data flow { the
meaning of data is being taken loosely ) there is an edge in the opposite direction, from B
o 4.

Some edpes are called date edees becanse they have data points on them, More
specifically, for cach dependency type D, a number of edges will be specified as data

o

edges of the type ;. These edges contain data of type I% and appear in graph AL Ha.

data point T is on a data edge ( A, B ) this indicates that the data is output by B and then
taken into A, thus the reason that A depends on B.

Any graph is allowed that meet the following two criteria:

23

5




Fiual Report - 331
Contrag] Mo, DARWO 0004084
Cybernet Systema Corporntion

1= Only data edges can bave the same sowrce and target ( Le. be loops ).

2~ No two nodes in a graph can be on the same path to the root { or be directly
related ). Two nodes are directly related if repeatedly applying the parent function
to one of the nodes, eventually yields the other.

We now come to the discussion of different kinds of nodes. There are two kinds of
nodes, component nodes and virtual nodes, the former being the type that is shared
between the graphs and the tree. The component nodes represent functional objects in the
student, while virtual nodes represent non-funictional objects. However, virfual nodes
actually have a purpose, albeit a small one. Virtual nodes are used to represent the
intersection points of the dependencies, such as is common on a cireuitry schematic, in
which black dots represent intersecting wires. It could be possible to do with out virtual
nodes, however this would require converting diagrams with virfual nodes into 2 model
without any; there are odd scenarios in which this conversion becomes confusing,

So in summary, the program expects the following as input:
I- A tree T made up of component nodes C.
2~ A set of virtual nodes V1.

3~ A set of directed graphs S = { Al LA ymamed Dy ..., Dy, respectively,
in which the nodes of any A'are contained in (C U VT )L

5~ The function probability: C => {numbers from 0 to 1}, indicating
probabilities of being defective ( need only be defined for leaves of T ).

3.8 The Expansion of the Input to Create the Model

From the set of graphs and the tree, a collection of higher-fevel graphs is fornied that are
consistent with the given graphs, but contain less detail. The program determines how
many levels are in the tree T; call this number m. The m levels of T are numbered 1
through m from top to bottom. More specifically, the root is at level 1, and another node
nis at level 2 + [ number of nodes between it and the root |, Bach graph then also has a
level associated with it, namely the level of the node with the fargest level, that it ”
contains, In many cases it is expected that each of the graphs will contain all the leaf
nodes, so that the graph is a complete description of the dependency relationship at the
lowest level { or physical level ). The higher level graphs would then be less detailed
abstractions of the low level physical deseription,

For a graph A at level ¢, the program will construct graphs Ag.... A [x1], where graph Ay
is the graph corresponding to level k of tree T. - Graph A is set equal to-A and then the
program constructs Ag.ry from Ay, for k= 1,...,2 placing the edges so that the graph Agen
is consistent with the graph Ay, We will give the Graph Construction Algorithom that will
make use of the following function:
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Given a node n and a natural number k define
Ulnky = parent(n), if nis atlevel k

1, ofherwise

3.9 Graph Construction Algorithm
The construction of graph Ag.ny = (Vaen, Egn) from Ag = (Vg By
i« Vg = Vi with all the vertices at Jevel k in the tree T replaced by their parents
Initialize Egeqy = {}
2 - For each edge (u,v) in By doz.
a- u =k
v EUER
b ifu’ =y (Le the edge is a loop ) AND
{u,v) Is a data edge
then
Egery = Egeyyto (07, v7), and (0°,v) has all the properties of (u,v)
ifu v then

Eety = Egey o (0, v, and (0’,v*) has all the properties of (u,v)

We gee how the graph Ag.yy is consistent with the graph Ay, in that any edge (u,v) in Agen
is represented in Ay as an edge (w,2), where w could be a child of u and 2 could be 2 child
of v. Notice that the above Graph Construction Algorithm will only create loops {edges
having the same nodes for its source and target) if the edge is a data edge. A crucial point
is that the bigher level graphs that are constructed have edges with the same properties as
the ones they are derived from. This includes their name and the fact that they have the
same dafa point on them. This also includes any changes made to one of the edges; what

is really going on is that there is one edge existing on different levels. )

Probabilities of being defective should be passed up the tree from the given probabilities
at the leaves, as done in the following algorithm:

3.10 Probability Percolation Algorithm

Starting at the leaves and moving up to root, pass up probabilities as follows:

Given a node N with ¢ children ¢y,...,c, having respective prohabilitics of being
defective py,. ..,pr then :

probabifity that N is defective = probability that at least one of ¢ is defective

= | - probability that none of ¢; are defective

o
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= I (Bpp(1epa).. (1-p)
3.11 Drawing Conclusions In Real Time

The proeess of constructing the graphs and other work to this point is done before serious
concern over time efficiency, When the data points are declared to be either good or bad,
the real time process begins. In the following discussion we will use the following
notation:

Ay = the graph with dependency type D at level k

The discussion of the algorithm is difficult to describe sequentially because it can
respond to different real-time user instructions. Instead of describing an algorithm, the
basie capabilities will be discussed.

Given a level in the tree, the program can do three basic computations, The program can
compute the Possible Cause Lists ( P.C. lists ), the Possible Effect Lists (P.E. lists ), and
the Minimal Covers ( ML.Cs ). A typical approach would be to start at level 1, compute
the Possible Canse and BEffect Lists for this level, then go on to level 2 and do the same,
and so on. Then when the bottom level of the tree is reached or after a certain amount of
time has elapsed the program will stop moving down the tre¢ and the Minimal Covers
will be computed at the lowest level reached. The Minimal Covers could be computed at
each level, but since they can take a fair amount of time, they are only computed at the
fowest level reached.

This scheme is only one of many possible approaches. The Minimal Covers could be
computed at each level or the program could skip some levels, for example. Given that
there is such variability, we will discuss what these 3 computations are and how they are
arrived at and go no further for now.

3.12 Possible Cauge Lists

A Possible Cause List can be computed for a bad data point at a particular level L in the
free. Recall that some edges are data edges and contain data, which can be bad or good {
or unknown ). The Possible Cause List for a particular bad data will be a sct of

component nodes; the list gets its name because if any of these component nodes are -

malfunctioning it could be causing the bad data under consideration. To understand
precisely what they are we give an overview of the algorithm used to compute then.

Given a bad data point T, we want to find the P.C. list of T af level L.

1- Let E be the data edge that T is located on at level L. Recall that data points are
focated on data edges and the same edge exists at multiple levels, all with the
same data point.

387
)

Let G be the graph that E is in at the given level.

3~ Let P.C. be the set of all nodes in G that are reachable from E by following the
edges in the standard direction from source to target, subject to one restriction:

s [fan edge contains a good data point, then the edge is not traversed,
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The rational behind this algorithm is to put a component node on the P.C. list of a bad
data point, if the data point depends on that component node, thus the reason why the
above algorithm calls for traversing the graph in the direction of dependence, from source
to target. Now consider the reason for not traversing an edge containing a good data
point. Assume the graph is being traversed and the node A has been included in the P.C.
list and the edge { A, B ), which contains a good data point, is in G, Since A could be
causing the bad data { we know this because it is on the P.C. list ) and A depends on B, it
could be the case that B is defective and thus causing the bad data. However, the good
data is output by B to A which indicates that though B could have problems in other
areas, itis giving good output to A.

3,13 Possible Effect Lists

A P.E. list can be computed for a node at a particular level L in the tree. This is the listof
data points, possibly of different dependency types, thal the node could be causing to be
bad: so these data points are the ones that the node effects. Such a list could be
constructed in a way very similar to constructing P.C. lists. In this case, the algorithm
starts at the node in question and traverse the edges in the opposite direction, going from
targef to source. Again, edges with good data points would not be traversed. Besides
traversing in the opposite direction, another difference is the fact that a P.E. list can
encompass a number of dependency types. For this reason, in the mentioned traversal,
what is actually meant is a separate traversal for the graph of each dependency type at the
given level. However, ihis computation can be accomplished without a traversal, by
simply looking at the P.C. lists for all the dependency types, and computing the P.E. lists
for all the nodes in the P.C, lists ( nodes not in the P.C. lists will bave empty P.E. lists ).

1~ Initiahize the P.E. list of all the nodes at to be empty.
2. Foreach P.C. list P for data T, at level L, do the following:

e - For each node N in P, put T on the P.E. list of N,

3.14 Minimal Covers

We now discuss what a  mtinimal cover s by beginning with a motivation for its
definition. Given the student at some level of abstraction with its bad data we want to
find hypotheses that explain alt the bad data. A hypothesis is simply a set of components
such that all of them being defective provides an adequate explanation of the bad data.
However we also don't want to provide foo much information in our hypothesis, thus
cach component in our hypothesis is important to the explanation of the bad data. We
capture this idea of hypothesis formally in the following definition of a minimal cover.

Given a directed graph G = (V, E) and a set of bad data edges B ¢ E, we say that a set of
vertices C ¢ V covers B if for every edge in BB there is a path from some vertex in C to
this edge, moving in the opposite direction of the edges from target to source. We go in
the opposite direction of the edges since given a vertex v, moving in the direction of the
edges finds components and edges o which v depends, while moving in the opposite
direction finds edges and components that depend upon v, A cover 18 thus an adequale
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explanation for the bad data.  Given a cover C, we say that it is a minimal cover if
removing any vertex from C causes C to cease being a cover. So a minimal cover is an
adequate explanation of the bad data that doesn’t contain too much information,

The computation of the minimal covers takes exponential time in the worse case, so 2
backtracking approach is used to reduce the time expense. The minimal covers are
actually computed from the P.C. and P.E. lists, though they could be computed directly
from the graphs.

3.15 Overview of Algorithm te Find Minimal Covers

The following describes how the minimal cover finding algorithm works, It complements
descriptions that are included in the software modules themselves, To make referral to
the software easier, references are made to the class hierarchy® in the software as
indicated in the footnote.”

The sets of the algorithm sequentially are:
3~ Let C be the empty sequence (this represents the current solution)
Let § be the empty set of solutions (will contain all the minimal
covers at the end of the algorithny
Let N be a sequence of nodes obtained from all of the possible cause
lists (these are the nodes which can be in a minimal cove, this s a
static entity).
2- If there is a next node from N to add to the current C, then add it,

otherwise, remove the last element added and add next node (IF
POSSIBLE).

2 Specifically, refer to the description of SearchTree class and  especially  the  mothod
GetNextSolutionByBackiracking,  Also refer o the MinimalCover class and especially the methods
AddElement and RemovelastBlement. The precise deseription of the algorithm is in essence contained in
tiese places. Thore are explenations in these dasses that complement this overview document well. Also,
the references in Searchiree ave valuable, and the fdeas are similor.

3 Clusses involved with Minimad Cover Computation inchude the following, with class hevarchy Indicaed:
1- SearchTree
2« UnorderedSoluttonSearchTrom BearchTree
3« MintmalCoverSearchTree: UnorderedSearchiTree
4« SolutionCeontainey
S Cover: SolutionContainer
& MinimalCover: Cover
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3~ If this last remove/add is not possible then we are done and S contains
our minimal covers.”
4- If Cisaminimal coverthenadd Cto 8
£ C is “Bad” (see below) or C is minimal cover then backtrack,
meaning that we remove the last element added to C*, and thus cut off the
possibility of any future extensions in this direction.
Otherwise, we have a C that is not yet a minimal cover, but which
could conceivably be extended to one.
3. Goto {2}

Fuarther Connments on above:

C is "Bad” if it is not a minimal cover, and furthermore could not possibly be extended to
a minimal cover by adding nodes. As soon as we know C is Bad, we stop extending in
that direction. Badness is tested for by the algorithm in MinimalCover::isMinimal (Note
that this returns false if "Bad" and true not “Bad™). What happens is that each node is
examined and each should uniquely cover some data, otherwise it could be removed with
no effect, and so the cover could not possibly be minimal. :

Hlustrative Example of the Algorithm:

To illustrate the algorithm conceptually, we use the following example graph:

Let G be the following graph (shown to

1)% Vertices = a b,c.d.e
\”“‘w Edges(going from source to target) =
@@M (@D b)) ee) :

Data = Tlondb,e), T2 on{e)

T2
We have possible causes (P.C.) lists
Figure 15:Example Graph (for PLCOfTI=[db]
Mustrating the Minimal Cover PCofT2=[n,¢ d]

Computational Algorithm)

* via MinimalCover:: AddElement and MindmalCover: RemoveBlement

? via MinimalCover::RemovelastBlementAdded
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The minimal covers we should find are:
{d}, {a,b}, {b,c}
The following is an llustrative run of the algorithm, with comments:
- = <>, empty sequence, $={3, N={ a,b, ¢, d }°
Put C in the root of a wree’
2- C=<na>, Putthis as the leftmost child of C (or < ... »), the root.
3- C only covers T2 so it is not a cover. But it is not Bad either, so goto (2).
2« C=<gz b> Putbaschildof<a> '
3. (" is a minimal cover so make S = { <a, b> }.
Remove last element added, namely b, So we go up tree to node < a2,
2- Adde,soC=<a 0> |

3~ C is Bad since both a and ¢ ONLY cover T2, and so neither one has data that it
uniquely covers. Actually we only needed one such bad node. No matter what is
added to < &, ¢ > it could not possibly be minimal because either a or ¢ could
always be removed.

2- Addd, so C= <a d>, rightmost child of < a > in the search tree.
3- Cisbad. Inthis case d is actually a minimal ON its OWN,

Remove d to get C =< a>, Nothing is left to add to € so remove the last element
added, a, to get C = <>; and we are back at the root of tree.

The following is a summary of what will happen from this point in the process forward
depicted by the variable changes (at every step):

S={<ab> <he>}
C=<b>

Comly, d> - 18 Bad

% This set does not include e

7 Such a tree is implicit in the running of the algorithm, and i essentindly & search ree, with posgible
’ 4 &
aolutions at its nodes,
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TN

s <

C=<e>

Cew g, d>-1s Bad
e

C o<

C =< d >« 15 a minkmal cover
S={<ab><bc>,<d>}

e
e

There is nothing else to add, so the algorithm is done
Limitations of the Current Algorithm:

A possible problem in the algorithm that ocewred to us after testing and debugging, is
that if a model has a cycle in its gmé)h so that a node "a" could actually depend on itself
pmblem% in resolution might oceur.”. Perhaps later we should check with examples, and
if this is a real problem we can patch it up ecither by disallowing such models to be
constructed, or allowing them and altering the algorithms slightly. The first approach
may be easier and actually makes more sense. This makes for a better system by being
appropriately inflexible, unless there could be a use in the future for such constructions.

4. Learning Styles

One of the main factors that must be taken into account when teaching students is their
preferred learning style. Everyone has a distinet learning style. Some styles are more
similar than others, but students have their own set of conditions that if met, provide them
with their ideal learning environment, However, most computer simulators often have
the tendency to teach using only one style. While this may be perfect for those students
who learn best through that style, those that don’t will expericnce difficulties learning and
have a much harder time grasping the required concepts. Kiernan (1979} stated:

We now see that part of the problem was the tendency 1o apply a single
(instructional) approach to all students... Student learning style challenges
this premise and argues for an cclectic instructional program, one based
upon a variety of techniques and structures, reflecting the different ways
that individual students acquire knowledge and skills, (p.H)

¥ This is nonsense becanse not real system would have a fault which depends on itsélf, bue it s themretically

possible 16 code such a madel up.
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Simulator software that provides a varied approach to leamning, and that matches
instructional methods with each student’s style preference, can result in improved
aftitudes toward learning and anvinerease in productivity and achievement.

4.1 Diagnosing a Stadent’s Learning Style

The most comprehensive way of determining an adult student’s learning style is through
the Productivity Environmental Preference Survey (PEPS). The PEPS is a 100 item sell~
report questionnaire that identifics individual adult preferences for conditions in a
working and/or learning environment. The PEPS contains: (1) measurement of 20
elements on a five-point Likert scale, (2) development by content and factor analysis, and
(3) reliability data equal to or greater than .60 for 68% of the 20 eclements. By
administering 2 PEPS beforchand, the simulator can ¢reate a model of the student’s
leamning style and then choose an appropriate initial instruction strategy. The student,
instructor, or simulator can then modify this strategy as training progresses. In the
following sections, each of the different Jearning style stimuli that can be addressed by
simulation software will be discussed, along with a method of implementation.

4.2 Physical Stimuli

Physical stimuli are aspects of the student’s physical state that provides the student with
his optimal learning environment. The four main categories of physical stimuli are
perceptual, intake, time, and mobility. Only one of these factors, perceptual, can be
taken into account in the simulator software. The instructor should regulate factors such
as intake {whether a student likes to cat while hie leams) or fime (what time of day that
student likes to learn) instead of the simulator. However, simulation software can address
the student’s perceptual preference, which will be described below.

4.3 Perceptual

Perceptual stimuli are the ways in which we acquire knowledge. The three classes of
perceptual stimuli are tactual-kinesthetic, auditory, and visual, A number of studies
verify that students” fearning is enhanced when they are taught through their personal
perceptual preferences (Urbschat, 1977; Carbo, 1980; Weinberg, 1983; Wheeler, 1983;
Jaronsheck, 1984; Kroon, 1983; Martini, 1986).

Tactual-kinesthetic (TK) learners are students who prefer to take a “hands on” approach.
They learn through doing, The best way for them to learn any task is through firsthand
experience. An adaptive helicopter simulator that allows a TK student to immediately
start the simulation, and then provide auditory or visual prompiing as he flies, will
provide this student with a better learning envivonment. For exaple, an introductory TK
lesson could start with the helicopter at 1,000 feet. Pre-recorded audio nstructiong
explaining to the student that he or she must maiatain a steady heading through the use of
the cyelic and tail rotor pedals would be broadeast over the headphones. As the sticlent
tries to maintain a steady heading, the simulator would prompt the student to apply more
pressure to the right or left rotor pedal, pull back on the cyelic, or make any adjustment to
the controls that were necessacy. If the student is not able to maintain the course, the
simufator would re-center the helicopter and have the student try again.
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Visual learners learn best by reading information, or viewing a slide/movie presentation.
Any form of media by which the student can see the material to be learned will be
effective. A visual student would gain the most out of reading an instruction manual or

textbook before he begins training. An adaptive helicopter simulator that begins by

presenting the student with written material or visual presentations and then allows a
student to reference this material during the lesson would provide an effective approach.
The student would also benefit from being able to nocess written instructions and to
receive visual prompts during the simulation.  For example, given the same scenario as
the TK leamer above, written descriptions of how to use the cyclic and rotor foot pedals
would be displayed on sereen, followed by a description of the introductory lesson. As
soon as the simulation began, visual prompting would be administered to correct the
student. A picture of a red left rotor pedal popping up in the lower left corner, signifying
that the trainee should push it, would be an example of a visval prompt.

Auditory learners are likened to having a tape recorder inside their head. They are
usually able to remember conversations well, and learn the best from lectures, and other
auditory stimuli. The best way for this student to learn is by listening to pre-recorded
information, and responding to it in a verbal manner.  An adaptive simulator for an
auditory learner would give the student audio instructions with visual aids. It would also
allow the student to use voice recognition software to “talk back”™ fo the stmulator via
microphone in order to replay old information or obtain more detailed information on a
given subject. Given the same example as the TK and visual learners, a stadent would be
given verbal directions as if there were an instructor in the co-pilot’s seat. As the student
piloted the helicopter, the simulator would give the student advice like “Apply a litile
more pressure to the left rotor pedal” followed by “That's a little 100 much™ if they
pushed on it too hard. The student would also be able to query the simulator with verbal
commands like “Repeat instructions” or “Rotor pedal deseription.™

As long as students can be addressed primarily in their preferred perceptual learning style,
you can combine aspects of each style to effectively give the student o wider range of

options and more complete training.  For instance, a TK learner may {ind auditory

feedback like “Move the oyclic to the left” useful, while an auditory learner might like to
look at diagrams or presentations once in a while, or a visual lewaer be able to use voice
recognition commands to view written material, The idea of developing a model of the
student’s perceptual preference is to give the simulator an idea of how to start the
training. Perceptual preferences will not be used fo limit the student, and all options that
are avatlable to the other preferences can be accessed and changed through a readily
accessible user menu.

4.4 Environmental Stimuli

The only environmental stimuli that can currently be addressed in a flight simulator,
without making extensive changes to current hardware, is sound, While it is true that all
of the environmental stimuli could be addressed (Temperature, Light fevel, Design, and
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Sound), it is impractical, expensive, and sometimes counterproductive to have
thermostats, dimmer swiiches, and reclining seats built into military training simulators.
Therefore they will not be covered in this paper. The only environmental stimuli that can
be addressed without significantly altering the purpose and cost of training is sound.

Sound. Most flight simulators address sound in one of two ways, there is either an
absence of sound during instruction, or there is a mixture of background music and/or
sound effects. However, this approach fails to address the individual sound preferences
of each student. Some students prefer to learn with sound, while others do not. Schmeck
and Lockhart (1983) suggest that inherited differences in nervous system functioning
require that extroverted individuals learn in a stimulating environment, while introverted
persons prefer a quiet, calm environment with few distractions. In addition, Pizo (1981)
found that when sixth grade students were matched with their preferred acoustic
environments and the presence or absence of sound, these students scored significantly
higher in reading achievement and evidenced more positive attitudes toward school than
students who were mismatched on this element. A simulator that addresses sound would
start training according to each student’s preferred andio environment and also provide
the student with the choice to toggle sound effects and background music on or off in
addition to volume conirol.

5. OpenSkies Virtual Environment Training System

The OpenSkies Training system provides an interactive development system to train both
students and ihstructors in a Virtual Reality Environment. Many simulators have the
capability to familiarize the student with simulations of the actual instruments and a few
have the capability to create seripts for mission play. OpenSkies is the only one to have so
closely integrated the analysis and performance measurement capabilities directly within
the stmulation software.

3.1 Why is it needed?

OpenSkies is based on the training methodologies developed in Naval Research Labs for
actual Navy training, OpenSkies was created with the following key ideas behind it,

¢ To improve the student’s performance beyond current training
program capabilities,

s To provide a measurable performance standard,
* To provide the fast, simple creation of new training courses.
+ To provide a low cost solution to training on complex, expensive
equipment.
5.2 How will this system improve the student’s petformuance?

This system will draw better performance out of the student by:
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Providing for a more quantitative approach to performance
measurement.,

Providing a more structured environment in which instructors may
teach.

Showing students exactly where their deficiencies exist and
allowing them to concentrate on those items.

Ensuring that the student meets a specific level of overall
performance or performance in particular areas.

3.3 What are the advantages.of this system?

-

]

Low cost - requires only sub-$1000 PC.
Networked multi-participant capabilities for team training.

Applies  event-based training methodologies to &  virtual
environment,

Allows for recording and playback of the entire fraining mission
for later analysis.

Provides automatic performance analysis feedback to the student.

5.4 What is unique about this system?

.

Applies a quantitative approach that allows for a better comparison
of performance.

Instructors may ‘ride” along for real-time instructor analysis.

Provides for tracking of class level of performance as well as
instructor level of teaching.

Provides for the development of training scenarios in hours rather
than days or weeks,

This system may be customized to any domain for faster scenario

development,

5.8 The OpenSkices Scenario Development and Performance Measurerment

The OpenSkies interface contains tools for easily creating new scenarios and directly
i testing the student on the training exercises. The student’s exercise is comipletely recorded

for later analysis by the instructor as well as automatically analyzed to determine which
objectives the student has or has not met in each exercise. This interface includes:

¢ point and click programmuable seenario
» dialog boxes to test the student during the scenario

« initial conditions of the actual scenario

Lok
3
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« the capability to track all of the student’s responses, or lack thereof, o any
gvent

» collection and playback capability for any exercise
s instructor analysis of student performance
« automated performance analysis

*  Additionally, the system contains a complete application-programming
interface for adding complex and new event types,

Employing these tuterfaces, OpenSkies is able to produce a virtual environment training
system that provides realistic training and o complete performance analysis package for
training both students and nstructors,

5.6 Scenario Development

This capability provides the instructor with a simple interface for quickly developing new
COUrses.

Scenario Purpose and Objectives

This interface allows the instructor to define the scenario objectives for the
student through a point and click dialog box. These objectives are entered into the
objective database by the instructor and are generally defined for the specific type
of training.

Object Initialization

This interface provides a dialog box 1o set any initial conditions of the students
vehicle/avatar interface. Examples inchide limited amountys of fuel for vehicles or
an unfamiliar tool set for the avatar.

Scenario Events

This dialog box allows the instructor to select particular events to solicit responses
from the student. This can be interactions with other objects, test questions, ete.
This interface can be configured to be domain specific. For example, a fight -
training domain would set up pre-flight, takeoff, en route, ete. sections for
development and focus on communications, navigation and situational awareness
skitls for training the student,

Bricefing/ Debriefing

This interface provides the instructor with the capability 1o brief/debrief the
student. This consists of a text and MIME interface for providing information.
The MIME interface allows the instructor to attach any type of document to the
briefing including such items as video, audio, word documents, HTML documents
or any other information accessible on the computer system,
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Eavironment
This interface allows the instructor to change the weather and other environmental
conditions of the scenario,
5.7 Performance Aunalysis
This capability is provided by several picces, recording and playback, marking of events
and mission evaluation and mission summary.
Recording and Playback
The student’s mission is automatically recorded for later playback and analysis.
This includes all interactions with the system, such as the simulation environment,
popup questions and responses.
Marking of Events

The instructor may mark events in the system while monitoring i in real-time, or
playback for later analysis of particular events.

Mission Evaluation

This interface uses the recording and playback capabilities of the system. It allows
the instructor to playback the student’s scenario. The instructor may jump abead
to particular events and play them, as well as rate the student’s performance for
any particular event or objective.

Mission Summary

This summary effectively scores the student on his/her performance. The system
logs all events and objectives that the student did or not make and gives the
student points for successful objectives.
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figure 16: Scenario Edit Window

5.8 Example Scenario Developient

We present here a simple example scenario development for a pilot doing a pre-flight
checkout. Assuming we have already developed the domain specific objectives and skill
sets, the instructor can quickly develop a new scenario. The instructor starts by entering
any data about the airerafl type and initial state, such as the amount of fuel it has. The
instructor enters the main section of the scenario development, the Scenario Events
interface, where he/she is able to create the actual script content.

The instructor develops the seript content in the window shown in Figure 19 via the
following steps:
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1) The instructor starts by selecting the initial *Phase of the Mission’ for the course,
For this particular domain, this would be ‘Pre-Flight’.

2y The instructor selects the skill set that the student will be trained on. The
instractor may select from such items as ‘Instrument Checkout’, ‘Request
Clearance’, or “Taxi to Runway’, Assuming the instroctor selects *‘Request
Clearance’, the interface provides a list of events available for these criteria for
addition to the scenario,

3) The event choices will now be limited fo a few items such as ‘“Tower
Communication’, or ‘Radie Traffic’, or ‘Change Frequency’, representing the
events that may gceur at this point in the scenario. For this example, the instructor
sclects “Tower Communication’ and adds it to the scenario. The interface presents
the instructor with a list of sub-tasks that will occur,

The student initiates a call to the tower requesting clearance.
The tower acknowledges the call from the student and requests standby.

i

2

3. The tower provides clearance to the student,

4. The student acknowledoes the clearance to the fower,
S

The instructor selects each of these sub-tasks and defines the specific inputs
and outputs of these sub-tasks. The following dialog defines inputs for the
clearance from the tower event. '

Bl These include:

s the objective,

+ the radio station of the
student,

» time offsct from the
beginning of the scenario
or from another event,

» the maximum score that
the student mayv achicve
for this event,

o the recording of the

audio from the external
e , source such as the control
' fower,

1. Navyg 1E0G0, Pensacols Approach - Proteed ditset Crastivew, contad
ofin Approach on tre two four peint zere five,

s a description of the
actual message.

Figure 17: Instruction for Student by Time

39




Final Report « 334
Contract No. DASWOI-00-M-4088
Cybernet Systems Corparation

5) Once the instructor has finished entering the events and their inputs, the scenario
is saved.

6) The instructor may then test the scenario by executing the application,

This system allows the instructor to quickly develop the course based on specific skills
for each particular domain. Further, by defining the domain prior to the course
development, the instructor can easily understand and develop the course in a Familiar
manner,

5.9 Running the Example Scenario
The interface for executing any scenario is simple and straightforward.
1) The student logs in and loads up the particular scenario.

2) The student is then presented with the briefing for the scenario and starts the exercige
in the ajrcraft with the initial conditions set by the instructor. This may include the
flight path of the scenario if the instructor wishes.

3) The student then executes the scenario and responds to events such as popup dialogs

for situational awareness, radio calls from the tower and any other events
programmed by the
instructor,  The  system
records the entire scenario,
atehing for responses to all
events,

4) Once the student  has
completed  the  scenario,
hefshe is presented with the
summary analysis of histher
performance. This provides
the student with a rating and
analysis of which objcctives
were met.

5y The student may then go

Figure 18: Coutrol Pancl back and uy the scenario
again 10 correct any errors

that occurred in the first ron.

40




Final Repost - 331
Congract Mo, DASWE00-M-4088
Cyvbornet Systems Corporation

This interface is all automatic, running the student through the scenario withowt the
student needing any training on the software prior to executing the scenario. This
provides a simple interface that a student may use at any time. Also, since the system runs
on desktop PCs, the student may actually practice at home on a desktop PC.

Werhally conpletes pretast cheidlisy,
Sudtches th Channel 20, {ATIS),

Thists Herth Whiting Field informatinn
Coples turent ATIS infornution,

Suitehes o channet 1, North Whiting Ground
North Whiting Grond, Navy SE312, taw IFR

Figure 19: Evaluation Results

The instructor may either ‘ride along’ with the student at the time of running the scenario,
or analyze the student’s performance later. The instructor rides along by sitting at another
station that is connected via a network to the student’s station. This networked machine
may be anywhere that it is possible to connect via the network. So an instructor may
actually be across the country while monitoring a student. The instructor may then
critique the student’s performance, or even take the controls from the student in order to
demonstrate the maneuver that he/she wishes the student to perform,

Once the student has performed the exercise, the instructor may analyze the student’s
performance. The instructor can look at the summary analysis page and decide if there are
any particular pieces to investigate. The instructor can use the Mission Evaluation screen
to playback the entire scenario, or move to any particular piece and playback that part of
the scenario specifically. This playback includes all controls by the student, including any
popups and radio calls, as well as all of the student’s responses.
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In addition, the instructor may have entered events for the student to respond to in the

EE

Veabaly complste: petmd the,.
3 This Is North \whiling Field infar...
14, Coples ourent ATHS kdomalion,
5 Switchios to channel 1, Nothw ..
8, NothWhiting Ground, Naww 8E.,
7. BE32 sland by, Brenk, Movp 3.,
8, Grourel, 3E223, slfimalive

Figure 20: Mission Evaluation

scenario. These would be accessed on playback and may allow for such things as the
instructor to rate the performance of a particular maneuver, Once the instructor has
finished evaluating the student’s performance, the summary analysis can be printed out
and the students’ performances can be rated.

In this manner, the instructor’s grading habits may also be monitored, since any student’s
performance is then comparable to any other student performing the same scenario. Also,
instructors may be trained by having actual instructors run the scenarios and purposely
make or not make mistakes for the student instructors to grade,

5.10 Addressing Student Errors
Once OpenSkics has been informed of an error, the system is able to present the student
with an appropriate branch in the training scenario. This objective defines the adaptive
capability of the training system. We have developed an adaptive branching capability at
this phase to present the student with different options depending on the level of
capability of the student, These include such options as:

A specifically defined branch created by the instructor.

The systems may return the student to the section of the scenario before the error

ras made and have the stadent try the process again.
The system may agk if the student requires instruction at this point in the scenario.
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The student may ask